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“The industry’s aim of a thousand years ago endures—foremost not to rebuild the human part, 

rather to offer its basic function” 

-Meier et al., 2004 

Review of Literature 

I. Introduction 

 The human body is an ingenious result of evolution.  Intelligent prosthetic devices, those 

utilizing computerized systems and minimal user input, cannot yet mimic the human range of 

motion; however, important new technologies are making it increasingly possible to restore 

practical function.  

 State-of-the-art prosthetic devices are often prohibitively expensive (~$18,000) (Touch 

Bionics, Inc., Livingston, UK) and may require the surgical implantation of electrodes and 

sensors, something that many people with limb deficiencies will not tolerate [1].  Those in need 

of prosthetics usually prefer a device that is easy to maintain, equip and learn, goals on which 

this research focuses. 

II. Methods of Prosthetic Control 

Current principle control methods include passive, cable, experimental neural control, 

and myoelectric control.  In passive control, a prosthetic hand is essentially locked into one of a 

limited number of chosen positions.  Passive models are generally used as strictly cosmetic 

devices, with limited manipulative abilities [2]. 

Cable, or body powered control, allows for the simple direct control of a prosthetic 

device.  They make use of cables connected to existing residual limbs in order to control the 

hand [3].  The OttoBock hand, for example, uses deliberate pulls on a cable to control 

movement. 
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Neural control is a potential future control method that is in its infancy.  It works by using 

electrodes on the brain’s surface to intercept limb control signals in the form of goal and 

trajectory signals.  These are then translated into movement using a microcontroller.  Neural 

control is not yet fully practical and does not work efficiently for a single limb below-elbow 

amputation [4]. 

Presently, the most effective and accurate type of 

prosthetic control is myoelectric control, first envisioned in 

1945 by Reinhold Reiter of Munich University [5].  All 

muscles generate natural electrochemical potential when 

they contract (Figure 1); these myoelectric signals (MES) 

can then be read by myoelectrodes and amplified to measure 

a muscle’s naturally generated electricity.  After myoelectric processing via a microprocessor, 

these signals can be designated to control a particular degree of freedom in the prosthesis [6].  

 
Figure 1: Variation of Myoelectric 
Signal with Contraction Level [6]. 

 If a MES is picked up by an electrode, it indicates that the muscle is being contracted.  

This signal can then be processed and evaluated to determine whether the signal is active enough 

to indicate that the muscle has been intentionally tensed.  If the signal is active enough, the 

controller will instruct the prosthesis to operate based upon the signal’s amplitude. 

III. Limitations of Current Prosthetic Control Methods 

 Though the most sophisticated current control method is advanced pattern-recognition 

myoelectric control, it still has a number of disadvantages.  Primarily, it remains relatively 

inaccurate, with advanced models correctly determining muscle activation approximately 95% of 

the time when using four input channels.  Therefore, one out of 20 times, the hand will operate in 

an undesirable manner [7] (figures are not available for conventional myoelectrodes that do not 

 - 2 - 



  Blum, Jeremy  

use pattern recognition) [8].  Pattern recognition, a control method under development, requires 

the surgical implantation of electrodes, which run the risk of becoming infected or falling out of 

position.   Finally, extensive signal processing must be performed to interpret the signal and 

remove excess noise before it can control a myoelectric device. Various processing techniques, 

including time-frequency analysis, wavelet analysis, neural network, and fuzzy classifications, 

have been developed, but none exist that work without flaws [9].  The need for customized signal 

processing makes it difficult to customize one design for different users with different needs and 

disabilities [10]. 

 Creating an improved control method that can overcome these obstacles is essential to 

patients.  This research focuses on using force sensors in place of myoelectrodes as a new 

intelligent prosthetic control method.   

IV. Creating a More Accurate Control Method 

Force sensors are piezoelectric, meaning that their output voltages can be manipulated 

based on the amount of pressure applied to a resistive ink. They can be used to measure the 

contraction of muscles, and the resulting voltage measurement can be compared with the 

electrical signal generated when measured by conventional myoelectrodes.  While others have 

used devices to measure muscle bulge, it has never been measured using force sensors, nor has it 

been implemented in a multi-sensor, pattern recognition setup with the purpose of controlling a 

prosthesis [11].  By investigating this unexplored control method, this research has the potential 

to make some applications of multifunction prostheses less expensive and less invasive with the 

potential to eliminate signal processing.  
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Hypothesis 

 If direct measurement via force sensors accurately predicts muscle bulge comparably to 

indirect measurement by surface myoelectrodes, while effectively demonstrating a sufficient 

resolution between various forearm muscles, it will offer an alternative form of prosthetic 

control.  This may provide a simple yet superior low-cost method to accurately detect muscle 

movement without invasive surgery, while appealing to a much broader socioeconomic group. 

Objectives 

I. Objective 1 

A proof-of-concept hand, capable of using a single force sensor and a microprocessor to 

control hand movement, will be developed to respond directly to force sensor input in order to 

demonstrate the practicality of this control scheme. 

II. Objective 2 

 A computer interface will be constructed that will allow readings to be taken from 

multiple channels of force sensors and myoelectrodes so that the inputs from multiple muscles 

may be compared for each method.   

III. Objective 3 

 An input analysis program will be written to compare the accuracy of the force sensor 

inputs to the myoelectric inputs. 

Methods and Materials 

I. Prosthetic Prototype: Objective 1 

I built the prosthetic prototype (Figure 2a, and 2b) as a proof-of-concept to demonstrate 

that force sensor control of a grasping mechanism could be accomplished.   
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Figure 2a: Prosthetic Prototype Schematic (Blum, 2007). Figure 2b: Prosthetic Prototype (Blum, 2007) 

USB Interface 

Servo Motor 

Force Sensor 
Vibration LED 

Grasping Hand 

Vibration Sensor Vibration Sensor Amplification Circuit 
Force Level Number LED BasicStamp 2pe 

The BasicStamp 2pe microprocessor (Parallax, Inc., Rocklin, CA) was run on PBASIC 

language, a modified version of the popular BASIC programming language.  It was chosen due 

to low power consumption (5V at 15mA current draw), processor speed (8MHz), and large read-

only memory (ROM) for downloading programs (16 x 2000 Bytes).  It was chosen over 

BasicStamps with slightly faster processors due to its fairly quick processing speed, but very low 

power consumption, which resulted in less battery usage. 

 To control the hand’s grasping mechanism, a 100º limited rotation grip actuation servo 

(Parallax, Inc.) was used for movement because of its design as a PBASIC-controlled motor.  Its 

movement was controlled by square-wave pulse-width modulation determined in PBASIC. 

 A FlexiForce model A201 force sensor (Tekscan, Inc., South Boston, MA) was utilized 

as the main activator for hand movement because of its low price and durability.  Via PBASIC 

programming, levels of force measured by capacitor charge time (0.1 μF capacitor) were 

assigned to different motor degrees. This resulted in a semi-proportional control scheme in which 

a range of raw forces were assigned to a single activation magnitude to achieve as much 

proportional control as was possible with a BasicStamp.  To debug the force level, a numerical 

readout LED was programmed to display the force level on an arbitrary scale from zero to six.  

Figures 3a and 3b show voltage levels produced by the sensors at various levels of force, and the 

values for R (ohms) and C (μF). 
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Figure 3a: Force inputs and resulting 

voltages (tekscan.com, 2006) 
Figure 3b: Resistances as a function of force  

(tekscan.com, 2006) 
  

A vibration-activated slip sensor that could sense 

and then arrest a slipping object was installed.  Its 

successful operation demonstrated that a force-activated 

prosthesis could be successfully interfaced with 

technology that is currently used on myoelectric arms.  A 

non-inverting voltage amplifier circuit, using a current to voltage converter, amplified the charge 

created by the piezo sensor.  The final amplification was equivalent to 1+(12M/12), or 100001 

(Figure 4).  This circuit was designed using a TLC2272 dual channel operational amplifier 

(Texas Instruments, Inc., Dallas, TX) to increase the signal level from the vibration sensor 

mounted in the grip.  The operational amplifier could take two input signals and amplify the 

difference, providing a voltage gain.  A voltage amplifier was used instead of a charge amplifier 

because it exhibits less temperature dependence, a potential problem when using piezo film 

sensors (Measurement Specialties, Inc., Hampton, VA).  A red warning LED was installed and 

instructed by the PBASIC program to illuminate every time the vibration sensor circuit detected 

slip with the hand automatically arresting it. 

Figure 4: Vibration Sensor Circuit 
(Kyberd/Blum, 2007) 

II. Computer Interfaced Force Sensor Circuit: Objective 2 

 A computer interface board was developed to allow the force sensors to communicate 

with MATLAB, a computing program and language used for acquiring and analyzing data.  A 
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USB Data Acquisition Device (DAQ) from National Instruments was interfaced with a circuit 

board to amplify the signal from the four force sensors so that the resulting voltages could be fed 

into the computer.  The main amplification unit, a TLC2274 quad channel operational amplifier 

(Texas Instruments, Inc., Dallas, TX), was used because of its ability to simultaneously amplify 

up to four channels (Figure 5). 

Figure 5: TLC2274 Operational Amplifier (adapted from Texas Instruments, Blum, 2007) 

Output 1 to DAQ Output 4 to DAQ 

Force Sensor 1 
Power 

Force Sensor 2 

Force Sensor 4 
Ground 

Force Sensor 3 

Output 2 to DAQ Output 3 to DAQ 

 This complete setup (shown below in Figure 6) allowed four force sensors to have their 

voltages accurately measured on a USB-enabled computer. 

Figure 6: DAQ and amplification circuit board with four force sensors connected (Blum, 2007) 

Sheathed FSR extension wires 

FSR connection to amplification board 

TLC2274 Quad Op Amp 

USB cable for computer connection 
Variable Resistor to adjust amplification 
Wire to ground 
Output from amplified signal to DAQ 

National Instruments 6008 USB DAQ 

+5V power, DAQ  amplification board 

 The last device needed to capture muscle bulge levels was a thermoplastic forearm splint 

cast equipped with force sensors.  The cast was molded to my arm, fitted with force sensors, and 

retained with Velcro® straps.  It was fabricated for the author by a prosthetist at the University 

of New Brunswick’s (UNB) Institute of Biomedical Engineering using a sheet of low-
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temperature molding plastic.   The sheet was heated and fitted around the arm, and a thumb hole 

was cut, preventing the cast from rotating once on.  On a prosthesis user, the socket would be 

locked around the elbow for the same reason.  The cast was cut down the middle for ease of 

removal and was fitted with Velcro to allow tension adjustment.  Next, the author, with the 

assistance of Dr. Peter Kyberd of UNB’s Institute of Biomedical Engineering, laid out the force 

sensor locations.  Due to limitations in the available number of simultaneous input channels, four 

force sensors were added for this proof-of-concept.  The four muscles used were associated with 

four different actions:  

Table 1: Four Forearm Force Sensor Locations and Associated Actions (Blum, 2007) 
Flexor Digitorum Superficialis - finger flexion Extensor Carpi Ulnaris - finger extension 

Flexor Carpi Ulnaris - wrist flexion Extensor Carpi Radialis Brevis - wrist extension 

These four forearm muscles were chosen because they are generally still accessible on an 

individual with a partial limb deficiency.  Pronation and supination were dependant on Pronator 

Teres and the Supinator, respectively, and could not be used.  The areas of largest muscle bulge 

difference were marked on my arm by Dr. Peter Kyberd (Figures 7 and 8). 

 
Figure 7: Bulge areas for muscle #2 (Extensor 

Carpi Ulnaris), #4 (Supinator), and #6 (Extensor 
Carpi Radialis Brevis) (Blum, 2007) 

 
Figure 8: Bulge areas for muscle #1 (Flexor 

Digitorum Superficialis), #3 (Pronator Teres), 
and #5 (Flexor Carpi Ulnaris) (Blum, 2007) 

Author’s arm Author’s arm 

 Force sensors were mounted inside the cast using standard double-sided tape (Figure 9).  

Sheathed extension wires were soldered to the force sensors to reduce the level of external 

electrostatic noise pickup from local sources such as power line frequencies and transformers.  
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Molex® connectors were utilized for easy connection with the amplification board (Figure 10).  

Finally, the cast was fitted, and the force sensors were tested (Figure 11). 

 
Figure 9: Internally mounted 
force sensors (Blum, 2007) 

Figure 10: Cast worn by Blum, 
connected to DAQ (Blum, 2007) 

Figure 11: Cast with sensors 
mounted (Blum, 2007) 

 The last step of the second objective was completed with multiple MATLAB programs, 

coded by the author, used to record force sensor data for a fixed period of time (capture time), 

analyze it, and then export the data to graphs for later comparison1.  I wrote a command prompt-

based user interface to allow control of all aspects of data acquisition and analysis.  Three types 

of muscle bulge were analyzed, each with a capture time of 10 seconds and a sample rate of 1 

KHz.  First, a resting measurement was taken, where no muscle bulge occurred; this served as a 

baseline for the active bulge data.  Next, calibration data, or a continuous 10 second flex of a 

single muscle, was acquired for each of the six muscles undergoing testing.  Last, action data, or 

a pause, followed by a flex of a single muscle, followed by a pause, was acquired for each of the 

six muscles undergoing testing.  The muscles tested are shown below in table 2. 

Table 2: Six Forearm Muscles Tested (Blum, 2007) 
Flexor Digitorum Superficialis - finger flexion Extensor Carpi Ulnaris - finger extension 
Flexor Carpi Ulnaris - wrist flexion Extensor Carpi Radialis Brevis - wrist extension 
Pronator Teres - wrist pronation Supinator - wrist supination 

III. Computer Input Analysis Program: Objective 3 

 In order to show that a force sensor-controlled hand would only move based on desired 

input, I created an analysis program to convert raw data into a single control signal that would 

vary based on the various inputs.  For this algorithm, a linear discriminant analysis method that 
                                                 
1 See appendix A for complete description of acquisition and analysis process. 
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had been previously employed by the SVEN myoelectric hand was adapted [12].  The SVEN 

Function is defined as follows:  

F(x)=Wx+w0 

where an F(x) value greater than zero indicated activation, and a value less than or equal to zero 

indicated no activation; Wx and W0 were found using the formulas shown below.  If the force 

sensors were accurate, they should only result in a value above zero when the calibration muscle 

matched the action muscle.  To keep the formula simple, it was assumed that the covariance of x 

was the same whether or not the function F was on.   

The data was then acquired in this method: 10,000 samples of data were acquired over a 

10 second period while the user was soliciting function F (a given muscle bulge).  This data was 

called x1(t).  Next, the same type of data was acquired while the user did not solicit function F.  

This data was called x2(t).  MATLAB was used to calculate the mean signal vector of each set: 

m1=F(x1)               m2=F(x2) 

MATLAB was also employed to calculate the covariance matrix of the data using the code:  

C=cov(x1) 

Next, W and w0 were calculated so that F could be determined2:  

W=inv(C)*(m1+m2)          w0=(-.5)*((m1+m2)’)*W 

This process was carried out for all six input movements mentioned previously in table 2.   

No sensors were placed to measure pronation or supination, but these were tested to 

ascertain if they could be separated using only four sensors.  Finally, the action data was 

acquired in the method described earlier, and it was combined with the first SVEN Function into 

a new one, resulting in a graph showing how well each calibration predicted an action.  The 

MATLAB code to do so was as follows:  
                                                 
2 This is using MATLAB notation, where apostrophe (’) means transpose the matrix, and inv() means matrix inverse 
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for i=1:number_in_col 

       F(i)= ((W')*((x3(i,:))'))+w0; 

end 

A FOR statement was used to make sure this was calculated for all 10,000 samples.  This 

resulting graph was then smoothed using another MATLAB program to remove noise resulting 

from the previous calculations. 

With a final MATLAB program, this was converted to a digital signal where anything 

above zero was converted to a one (hand activated), and everything equal to or below zero was 

converted to a zero (hand not activated).  This process was repeated with every combination of 

action data and calibration data to derive which force sensors picked up on which muscle bulges. 

Results and Discussion 

I. Prosthetic Prototype: Objective 1 

 Results were measured qualitatively and were used to demonstrate that a prosthesis could 

be controlled both accurately and efficiently using a force sensor-controlled program and 

accompanying circuitry.  The novel BASIC program functioned properly, assigning a value 

between zero and six depending on the approximate force applied.  The slip sensing circuit was 

also successful, alerting the processor of vibration and working to arrest it.  While the prototype 

was bulky, this was a limitation of prototyping and not of the fundamental design.  The cost of 

the prototype was less than that of an ordinary intelligent prosthetic device:  the force sensors 

alone cost 100 times less than myoelectrodes (without the additional cost of surgical 

implantation).  The potential for low-cost-of-manufacture indicates that force sensor-based 

control methods could be applied to create more accessible prosthetic options for a wider 

socioeconomic group.  
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II. MATLAB Simulations of Force Sensors’ Accuracy: Objectives 2 and 3 

Inactive calibration data was the first to be acquired, as it was necessary to act as a 

baseline for later comparison by the analysis program.  It consisted of keeping the entire forearm 

relaxed.  The voltage graph showed very low levels of noise or activation, indicating that 

interference would not be a concern for force sensor control (Figure 12). 

All Muscles Relaxed (Force Sensors) 

Figure 12: Inactive Calibration Data (force sensors)

 The following raw calibration data shows that the active muscle was the one that 

produced the highest voltage level in each case, indicating accurate prediction.  The resolution 

between the voltages from different muscles indicates that force sensors differentiated correctly.  

The following graphs are digitized values of the amplified sensor inputs (Figure 13). 

(a) Finger Flexion (Force Sensors) (b) Finger Extension (Force Sensors) 

Figure 13 (a-b): Active Calibration Data (force sensors)
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(c) Wrist Flexion (Force Sensors) (d) Wrist Extension (Force Sensors) 

Figure 13 (c-d): Active Calibration Data (force sensors)

 In figure 13a, when I flexed my fingers, the Flexor Digitorum Superficialis showed the 

greatest voltage, indicating that the force sensors had accurately predicted the correct muscle.  

This held true for the active calibration data for Extensor Carpi Ulnaris, Flexor Carpi Ulnaris, 

and Extensor Carpi Radialis Brevis as well, showing that all force sensor locations resolved the 

correct muscle. 

Pronation and supination were also tested, despite that no force sensors were placed with 

the intention to resolve them.  Pronation elicited a response similar to wrist extension, indicating 

that if the pronator teres muscle were to be used as a control muscle on a prosthesis user, the 

placement of the sensor would be critical to ensure minimal cross talk. Wrist supination, as 

expected, showed no significant response. 

Matching raw data, including inactive and active calibration, was also acquired for the 

myoelectrodes.  Inactive calibration data, as with the force sensors, was acquired to act as a 

baseline for later comparison using the analysis program.  The inactive myoelectrode data 

showed levels of interference equally as low as the force sensors (Figure 14). 
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All Muscles Relaxed (Myoelectrodes) 

Figure 14: Inactive Calibration Data (myoelectrodes)

The raw active calibration data acquired from the myoelectrodes showed far more 

crosstalk and noise.  The following is raw data from the four main myoelectrodes (Figure 15): 

(a) Finger Flexion (Myoelectrodes) (b) Finger Extension (Myoelectrodes) 

(c) Wrist Flexion (Myoelectrodes) (d) Wrist Extension (Myoelectrodes) 

Figure 15 (a-d): Active Calibration Data (myoelectrodes)

 Signal variation was significantly higher for the myoelectrodes, with voltages varying 

greatly between each sample (Figures 15 a-d).  The only prediction that showed the correct 

voltage differences was that of wrist flexion (Figure 15c), compared with correct voltage 

differences on all four sensor channels. 

 - 14 - 



  Blum, Jeremy  

Pronation and supination were also tested as before.  Pronation elicited a response similar 

to wrist flexion, and supination elicited a response from Extensor Carpi Radial Brevis, the 

muscle that controls wrist extension, indicating that crosstalk would present a problem should 

these muscles be designated as control muscles on a myoelectric prosthesis. 

Qualitatively, the raw data for the force sensors was accurate, showing high levels of 

differentiation between the voltages from different force sensors.  However, the analysis 

algorithm, detailed below, did not always accurately represent this performance, often indicating 

concurrent activation for more than one input.  The performance of the SVEN algorithm, when 

analyzing the myoelectrode data, resulted in the same problem, indicating that the issue was not 

with the force sensors but with the analysis algorithm.   

There are 12 cases showing all the possible combinations between each calibration and 

action for both myoelectrodes and force sensors; for clarity there is a comparison of only one 

case: finger extension.  Figures 16a-g show the action data for finger extension compared with 

the active and inactive calibration data sets from the six tested muscles using the SVEN 

algorithm to determine which ones would elicit a significant response from a prosthesis (an 

arbitrary value above zero). 

(a) Finger Extension (Force Sensor Action Data) 

Figure 16 (a): Finger Extension SVEN outputs (force sensors) 
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(b) Finger Flexion (Control Signal) 

 
 

(c) Finger Extension (Control Signal) 

 
(d) Wrist Flexion (Control Signal) 

 

(e) Wrist Extension (Control Signal) 

(f) Wrist Pronation (Control Signal) 

 

(g) Wrist Supination (Control Signal) 

Figure 16 (b-g): Finger Extension SVEN outputs (force sensors) 

As would be expected, the finger extension SVEN Function (Figure 20c) peaked at the 

appropriate times, indicating hand activation.  However, finger flexion did as well.  Neither wrist 

flexion nor extension showed any activation, which is good since they were not the muscles 

being activated; pronation and supination had fairly random outcomes, as would be expected.  

Should these be controlling a prosthesis, the hand would be activated whenever the control signal 

was greater than zero; in other words, the SVEN Function acts as a digital signal, with all values 

above zero indicating activation, and all values less than zero indicating no action.  The errors 

that were present in this processing method could potentially be resolved in the future by 

performing a more advanced dynamic comparison with the voltages.  

For comparison, following is the same data from the myoelectrodes (Figure 17 a-g): 
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(a) Finger Extension (Myoelectric Action Data) 

(b) Finger Flexion ( Control Signal) 

 

(c) Finger Extension (Control Signal) 

 

(d) Wrist Flexion (Control Signal) 

 

(e) Wrist Extension (Control Signal) 

(f) Wrist Pronation (Control Signal) 

 

(g) Wrist Supination (Control Signal) 

Figure 17 (a-g): Finger Extension Action Data and SVEN outputs (myoelectrodes) 

 Results were more variable in the myoelectrodes, most likely due to greater crosstalk in 

the raw data.  All of the muscles except for wrist extension showed SVEN activation, indicating 

that the hand would activate far too often using myoelectrodes with this algorithm. 

The results indicate that while this analysis algorithm is not yet perfected, the raw data 

from the force sensors suggests clear promise in their future use for prosthetic control.  In 
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general, they differentiated well between muscles, without undue crosstalk on other force sensor 

channels. 

Conclusions 

 The qualitative results of the first objective demonstrate that force sensors hold a 

promising future.  Force sensor control provides a low-cost solution, opening advanced 

prosthetic control to a larger socioeconomic group.   They do not require implantation, thus 

eliminating the risk of infection or sensor movement, while allowing for the easy removal of a 

prosthesis, an advantage for many single-arm amputees.  The low levels of electrical interference 

indicate that an amputee could be easily trained to make use of force sensors and that force 

sensor control may prove more effective than myoelectrodes in some situations.  The raw force 

sensor data shows high levels of separation between signals, indicating their possible use as a 

control method without any post processing; a simple voltage boundary may be sufficient to 

determine muscle activation.  The SVEN Function algorithm shows promise as a potential post-

processing method, should it prove necessary, and requires perfecting before it can be used 

reliably.  Low cost, durability, and the ability to avoid crosstalk, all indicate that future prosthetic 

devices could utilize force sensors either independently or in a hybrid control method. 

Appendix A: Data Acquisition and Analysis System 

1. Raw voltage signals from the force sensors were tested to ensure that there was minimum 

interference using an oscilloscope, MATLAB, and National Instruments LabView software. 

2. The first program prompts the user to enter the desired sample rate and acquisition duration. 

3. Calibration data is acquired for each of the six muscles.  The program asks for the muscle the 

user is attempting to activate, so that the program may save the data appropriately.  

4. Resting data is acquired once as a comparison point, and the data is saved to a file. 
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5. Activation data is acquired for each of the six muscles.   The program asks for the muscle the 

user is attempting to activate, so that the program may save the data appropriately. 

6. Once all acquisitions have been completed, user can re-import saved data files to perform 

analysis.  First, resting data is imported, stored in memory, and a graph is exported.  Second, 

activation data is imported, stored in memory, and a graph is exported. 

7. Each of the six calibration data sets is compared to each of the six action data sets, resulting 

in a total of 36 outcomes.  First, all 6 calibration data sets and the resting data are compared 

using the SVEN Function.  The result of that is then compared via the SVEN Function again 

to the activation data to determine if activation has occurred. 

8. A SVEN graph, a smoothed SVEN graph, and a Digital On/Off graph is drawn and exported. 

9. Calibration graphs are visually compared with their associated action data to determine if 

muscle differentiation occurred. 

10. The Digital On/Off signal can be used to activate a prosthesis. 
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