USING FORCE SENSORS TO EFFECTIVELY CONTROL A BELOW-ELBOW INTELLIGENT PROSTHETIC DEVICE

Jeremy E. Blum, Byram Hills HS, Armonk, NY

Programming (PBasic)

Figure 2: Prosthetic Prototype (Blum, 2007)

Figure 5: Sensor Locations - Lateral Arm Aspect (Blum, 2007)

Figure 7: Internally mounted force sensors (Blum, 2007)

Figure 8: Cast fully equipped with sensors mounted (Blum, 2007)

Data Acquired for Each

Action Data

Contraction and relaxation cycle of target muscle **Resting Calibration Data** Relaxation of all muscles **Active Calibration Data** Contraction of target muscle Figure 6: Sensor Location - Medial Arm Aspect (Blum, 2007)

Figure 9: Cast worn by Blum, Connected to DAQ (Blum, 2007)

Figure 10: DAQ and amplification circuit board with four force sensors connected (Blum, 2007)

LabView Software to ensure minimal

- acquisition duration
- 3. Calibration data acquired for each of the six muscles; each muscle dataset saved as file
- 4. Resting data acquired once as comparison point; dataset saved as file
- 5. Activation data acquired for each of the six muscles; each muscle dataset saved as file
- 6. Saved data files imported for analysis
 - Resting data imported and a. stored in memory; graph exported to image file
 - Activation data imported and b. stored in memory; graph exported to image file
- All six calibration data sets compared 7. to the six action data sets, resulting in 36 outcomes. First, all six calibration data sets and resting data compared using SVEN Function. Results again compared via SVEN Function to activation data to determine if activation has occurred.
- 8. A SVEN graph, a smoothed SVEN graph, and a Digital On/Off graph are drawn and exported
- 9. Calibration graphs visually compared with their associated action data to determine if muscle differentiation occurred
- The Digital On/Off signal can be used 10. to activate a prosthesis

results and discussion						conclusions		
1. Prosthetic Prototype	2. Computer Interfaced Force Sensor Circuit The muscle being contracted should show the highest voltage to indicate proper differentiation (Channel color matches title color) Finger Extension (Extensor Carpi Ulnaris)		3. Computer Analysis Program Since finger extension is the action being tested, only the finger extension SVEN graph should surpass zero (red line) at any point <u>Finger Extension</u> = Finger Extension (Should exceed zero)		 No implantation → no risk of infection or sensor movement Pattern Recognition (SVEN function) mostly works without need for implantation 			
Force Approximation								
Hand can grip objects Slip circuit successfully arrests slip								
	(a) Active Calibration Data for Myoelectrodes	(b) Active Calibration Data for Force Sensors	(a) SVEN Function for Myoelectrodes	(b) SVEN Function for Force Sensors	Little interfer	ence + low cross-talk =		
	Dataset1-Contraction Active (Calibration)Finger Extension 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	Dataset1-Contraction Active (Calibration)Finger Extension 4.5 4.5 4.5 4.5 4.5 5.5 4.5 5.5 4.5 5.5 4.5 5.5 5	Dataset5-Hand Activated? (Smoothed) Finger Extension 80 60	Dataset5-Hand Activated? (Smoothed) Finger Extension 800 700	 high accurac Sufficient vol 	y rates tage separation ->		

vibration amplification circuit board; LED # Force Readout (scale of 0-6) + Vibration Warning LED;

hand with vibration sensor (Blum, 2007)

eliminate post processing (voltage boundary can be measured using a comparator circuit with a fixed reference voltage) • If post processing needed \rightarrow SVEN algorithm needs perfecting Low cost

acknowledgements

orneman

ie Greenwald Bongaarts

Iu Alpha Theta National Math	•Mr. David Keith
Shor Society	•IVII. Steven Borne
Pr. Peter Kyberd, University of New	 Mr. Ken Kaplan
unswick (UNB)	•Ms. Stephanie G
or. Bernie Hudgins, UNB	•Ms. Zenaida Bon
Greg Bush, UNB	 Dr. Paul Beeken
Valter Young, UNB	 Mr. Allen Blum
Gabriel Arseneau, UNB	 Ms. Stacy Wilder
Pr. Robert Pavlica	